
Solutions EMGMT - Exercises 10 October 2006
1.

n∑
i=0

2i = 2
n∑

i=0

i = 2(0 +
n∑

i=1

i) = 2(
n∑

i=1

i) = 2(
n

2
(n + 1)) = n(n + 1)

2. (a) Number of operations in algorithm arrayMax(A,n):

line 1: indexing + assignment: 2
line 2: subtraction + comparison; n times: 2n
line 3: subtraction + comparison: for a given i: n− i + 1 times, so:

n−1∑
i=1

2(n − i + 1) = 2
n−1∑
i=1

n − i + 1 = 2
n∑

i=2

i = 2(
n∑

i=1

i − 1) =

2(
n

2
(n + 1) − 1) = n(n + 1) − 2

line 4: 2 x indexing + comparison; for a given i: n−i times, so total:

n−1∑
i=1

3(n − i) = 3
n−1∑
i=1

n − i = 3
n−1∑
i=1

i = 3(
n

2
(n − 1)) =

3
2
n(n − 1)

line 5: indexing + comparison; for a given i: n − i times, so total:

n−1∑
i=1

2(n − i) = n(n − 1)

line 6: indexing + assignment; for a given i: n− i times, so: n(n−1)
End of loop line 3: addition + assignment; for a given i: n− i + 1
times, so total (see summation line 3):

n−1∑
i=1

2(n − i + 1) = n(n + 1) − 2

End of loop line 2: addition + assignment: 2n
line 7: return: 1
TOTAL:

2+2n+n(n+1)−2+
3
2
n(n−1)+n(n−1)+n(n−1)+n(n+1)−2+2n+1 =

n

(
4 + 2(n + 1) +

3
2
(n − 1)

)
− 1

1



(b) Number of operations in algorithm weird(A,n):

line 1: comparison; n + 1 times: n + 1
line 2: indexing + assignment; n times: 2n
line 3: assignment; n times: n
line 4: comparison; for a given i: at most log n + 1 times (this is
an overestimate; the precise amount is log(n− i) + 1, but this would
make the calculations too difficult for the goal of this exercise), so:

n∑
i=1

log n + 1 = n log n + n

line 5: comparison; n log n times: n logn
line 6: 3 x indexing + 2 x addition + assignment; for a given i:
4n logn times, so: 6 · (4n log n) = 24n logn
line 7: multiplication + assignment; n log n times: 2n log n
End of loop line 4: no overhead
End of loop line 1: addition + assignment: 2(n + 1)
line 8: return: 1
TOTAL:

n+1+2n+n+n logn+n+n logn+24n logn+2n logn+2(n+1)+1

= 28n logn + 7n + 4

3. (a)

n3 > 4n2 + 60n

⇒ n3 − 4n2 − 60n > 0

⇒ n(n − 10)(n + 6) > 0

This is true if all three factors are positive, or if two are negative and
one is positive, so −6 < n < 0 or n < 10. True for all n ≥ n0 if
n0 = 11.

(b)

8n log n < 2n2

⇒ 4 logn < n

Try for small n that are powers of 2;

n = 4 : 8 �< 4

n = 8 : 12 �< 8

n = 16 : 16 �< 16

True for all n ≥ n0 if n0 = 17.

2



(c)

2n > n4

⇒ log 2n > log n4

⇒ n > 4 log n

See b).

4. (a) c = 160, n0 = 1

(b) c = 32, n0 = 1

(c) n0 = 16, c = 1
10

5. f(n) = n4 log n

6. 210 — O(1)
2log n = n, 4n, 3n + 100 logn — O(n),
n log n, 4n logn + 2n — O(n log n)
n2 + 10n — O(n2)
n3 — O(n3)
2n — O(2n)

7. (a) Choose c = 11 and n0 = 1. For all n ≥ n0:

2n3 + 9n2 < 11n3 = c · n3

(b) Choose c = 1
9 and n0 = 2. For all n ≥ n0:

1
8
n log n ≥ 1

9
n log n = c · n log n

(c) big-Oh: choose c = 4 and n0 = 1. For all n ≥ n0:

2n+2 − n = 4 · 2n − n < 4 · 2n = c · 2n

big-Omega: choose c = 1 and n0 = 1. For all n ≥ n0:

2n+2 − n = 4 · 2n − n > 2n

(This inequality is true if 3 ·2n > n, which indeed holds for all n ≥ 1.)

8. Given: There are a c > 0 and an n0 ≥ 1 such that for all n ≥ n0:

d(n) ≤ c · f(n)

To prove: there exists a c′ > 0 and an n′
0 ≥ 1 such that for all n ≥ n′

0:

a · d(n) ≤ c′ · f(n)

We choose c′ = a · c. Then for all n ≥ n0:

a · d(n) ≤ a · c · f(n) = c′ · f(n).

3



9. False, because we can find a counterexample. Take d(n) = 5n, e(n) =
2n, f(n) = n + 1, and g(n) = n. Now d(n) − e(n) = 3n, but this is not
O(n + 1 − n) = O(1).

10. (a) O(n2)

(b) O(n log n)

4


